
Scheduling of 2-Steps Graph with UET Tasks in a 

Heterogeneous Environment 
Mounira Belmabrouk

#1
, Mounir Marrakchi

*2
 

#
 Faculty of Letters and Human Sciences, 

University of Sousse, Tunisia  
1
 Mounira.belmabk@isffs.rnu.tn 

*
 Department of Computer Sciences, Faculty of Sciences,  

University of Sfax, Tunisia   
2
Mounir.Marrakchi@fss.rnu.tn 

marrakchimounir@yahoo.fr 

 

Abstract— In this paper, we focus on scheduling the 2-steps 

graph with UET tasks, i.e. tasks with the same length, in a 

heterogeneous environment where processors are uniform and 

have different speeds. Given a 2-steps graph of size n and p 

processors, we determine the lower bound of the execution time 

of any scheduling by maximizing the activity of each processor. 

Then, we present an efficiency schedule in execution time and the 

experimental results without and with communication costs 

between processors and we compare the performance of our 

algorithm with existing scheduling scheme through the result of 

experiments.  
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Heterogeneous Environment, Optimality. 

I. INTRODUCTION 

The 2-steps graph is a precedence graph of several linear 

algebra algorithms such as the triangularization of a matrix, 

solving a triangular system ... [4], [5]. Here, we are interested 

in scheduling of 2-steps graph with UET (Unit Execution 

Time) tasks, i.e. the execution time for any task by the same 

processor is constant, which is the precedence graph of the 

algorithm solving a triangular system. In the general case, the 

search for an optimal solution of a scheduling problem is NP-

complete. But by setting some parameters of the problem, it is 

possible to resolve this issue. Scheduling in a homogeneous or 

heterogeneous 2-steps graph has been studied by several 

authors [1], [2], [3], [4], [5] but for all existing schedules 

optimality in time parallel execution is not yet reached. This is 

because, firstly, that the activity of each processor is not 

maximized and secondly that the communication cost is not 

minimized. Our goal in this article is to determine firstly the 

lower bound of the execution time of the 2-steps graph in a 

heterogeneous environment and secondly to find a scheduling 

more efficient than the existing.  Here, we minimize the 

schedule length, which is defined as the maximum completion 

time of all nodes by assuming tasks to processors while 

respecting the precedence constraints. This paper is organized 

as follows. In Section 2, we describe the related work. 

Thereafter, in section 3, we determine for any n the size of 

graph, the lower bound of the execution time of any 

scheduling neglecting the communication costs between 

processors assuming that vj satisfies vp/2≤vj≤vp (1≤j≤p-1) and 

p verified 2≤p≤n. Then, we present in paragraph 4 a parallel 

algorithm without and with communication   costs  in the  case  

where  v1-1=v2-1= …=  vα-1=vα+1=vα+2=…=vp=v, α (1≤α≤p) 

and v are integers. Finally and before concluding, we compare 

in section 5 the complexities found experimentally with those 

of previous work. 

II. RELATED WORK 

Efficient application scheduling is critical for achieving 

high performance in homogeneous and heterogeneous multi-

processors system. Different schedules, belonging to different 

classes such as list scheduling, cluster scheduling …, have 

been published. The schedule (HEFT) «Heterogeneous 

Earliest-Finish-Time» [5] is a recursive algorithm. It uses the 

concept of the earliest finish time of each task for ordering the 

tasks and assigning them to processors later.  The (PETS) 

"Performance Effective Task Scheduling" [3] scheduling has 

three phases. In the first phase, scheduling (PETS) regroups 

the independent tasks together. In the second and three phases, 

(PETS) computes priority and assigns each task to the 

available processor. The performances of (PETS) are better 

than the (HEFT). The paper [6]  suggest a novel approach 

called «Constrained Earliest Finish Time» (CEFT) to provide  

schedules for heterogeneous system using the concept of the 

constrained critical path. The experimentations results show 

that the (CEFT) strategy outperforms the well-known (HEFT) 

and (PETS) strategies. 

III. LOWER BOUND OF THE EXECUTION TIME 

Before calculating the lower bound of the parallel 

execution time of 2-steps graph with UET tasks in a 

heterogeneous environment, we present the following 

definitions. We consider G(n) the 2-steps graph with UET 

tasks and p processors p1, p2... pp having respectively speeds 
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v1, v2... vp. It is assumed that all vj are integers satisfying 

v1≤v2≤ ... ≤vp-1≤vp where vjvp/2 for all j satisfying (1≤j≤p-1). 

Figure  1  shows G(4). The  number  of  tasks to having   the 

2-steps graph is equal to (n
2
+n-2)/2. The graph G(n) is 

composed of  n-1  columns Ck (k = 2, .., n) where k is formed 

by the tasks T1k, T2k, ..., Tkk. A level i of G(n) (1≤i≤ n-1) 

contains the n-i+1 following tasks Ti,i+1, Ti+1,i+1, Ti,i+2 …, Ti,n.   

  

 

 

 

 

 

 

 

 

 

 

Fig. 1 The 2-steps graph for n=4. 

 

To find the lower bound of the execution time of tasks 

belonging to G(n), we minimize the processor inactivity time. 

Our goal is to keep all processors active as long as possible. 

For this, two processors with two different speeds, one that 

has the lowest speed is finally released later at the same time 

than  the other. As  at  the end of the execution of each task 

Tn-p+j,n-p+j (1≤j≤p-1) a processor must release, the slowest 

processors become inactive firstly. On the other hand, to 

minimize the idle time of processors, it is necessary that all 

processors are active until the execution the task Tn-p+1,n-p+2 

starts because at this time the number of free tasks is lower or 

equal to p-1. Then, the processor p1 becomes inactive and 

each other processor pj (2≤j≤p-1) executes  tasks of column 

Cn-p+j+1for the time when pp starts the  execution of  the task 

Tn-p+1,n-p+2. The fastest processor pp executes the tasks of the 

longest path constituted by Tn-p+j-1, n-p+j, Tn-p+j, n-p+j (2≤j≤ p).  

For this, we partition the 2-steps graph into two regions noted 

R(I) and R(II) as indicated in fig. 2. The boundary curve (C) 

between R(I) and R(II) is the equipotential curve which 

contains task Tn-p+1,n-p+2. We define,  

 

pjjpni vjpvijpnTch /)(2/)()( 1,   

 

where  j  verified  (2≤j≤p-1), as the  length  from the  task  Ti,n-

p+j+1R(II), to task Tnn by the sum of the  number  of  tasks 

situating between the tasks Ti,n-p+j+1 and  Tn-p+j-1,n-p+j+1and 

belonging to Cn-p+j+1\{Tn-p+j,n-p+j+1 , Tn-p+j+1,n-p+j+1} divided by vj 

and the number of tasks of critical path situated between Tn-

p+j,n-p+j+1 and Tnn  divided by vp.  The curve (C) is defined by 

the two path identified in bold on the fig. 2 are executed one 

(the tasks of the longest path) by pp and the other by pj (the 

tasks belonging to the column Cn-p+j+1) and pp (the tasks 

belonging to the longest path)  at  the  same  time.  It 

intercepts the column Cn-p+j+1 on the task Ti(j),n-p+j+1 where 

2≤j≤p-1:  

 

)()()( ),(2,11,1)( jpnjipnpnjpnji TchTchTch    

 

pjjpnji vjpvjijpnTch /)(2/))(()( 1),(   

 

jjpnjijpnji vTchTch /1)()( 1),(1,1)(    

 

ppnpn vpTch /)1(2)( 2,1   

 

Note that the curve (C) depends on the values for the speeds 

of processors.  

In the following, we note S(I) (resp. S(II)) the sum of tasks or 

part of tasks belonging to R(I) (resp. R(II)) and we determine 

the lower bound for execution the region R(I) with p  

processors having different speeds. The value of S(I) is equal 

to the total number of tasks of G(n) ): 

2/)2( 2  nn  

minus the total number of tasks:  

                    


p

j
pj vvjIIS

1

/)1(2)(   

belonging to R(II), then  

 


p

j
pj vvjnnIS

1

2 /)1(22/)2()( . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The partition of the 2-steps graph. 

 

In the following, we have the discussion for determining the 

lower bound of R(I): 

1. If all processors are active without interruption for 

executing the region R(I). In this case, we can suppose that the 
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p processors are identical to others p processors q1, q2... qp 

with the same speed equal to  

pvmv
p

i
i /)(

1




 

the average of the sum of speeds. Then, S(I)/p is the number 

of tasks, belonging to R(I), can be executed by each processor 

qj and 2(n-p) is the number of tasks constituted the longest 

path of R(I). Hence, )(2/)( pnpIS  and then we can 

consider all the processors are active without interruption for 

executing R(I) and )(/)()( mpvISILB  .  

2. If )(2/)( pnpIS   then it exists at least one 

processor that is idle for a period of time when executed the 

tasks of R(I). In this case, for minimizing the idle time of 

processors, the tasks of the longest path of R(I) must be 

executed by the faster processor pp. And each processor pj 

(1≤j≤p-1) can be executed pj vvpn /)(2   tasks of region R(I) 

private of the tasks constituted the longest path. Then, we 

have:  

 


p

j
pj vvpnIS

1

/)(2)(  

 

pvpnILB /)(2)(   if ∆≤0, 




p

i
ip vvpnILB

1

//)(2)( , otherwise 

For the time of parallel execution of region R(II) is equal to  

ppnpn vpTchIILB /)1(2)()( 2,1    

It is necessary that vjvp/2 (2≤j≤p-1).  Finally, we have 

LB=LB(I)+LB(II) and the following results are proved: 

THEOREM 

The lower bound LB for executing the UET 2-steps graph 

G(n)  with p  processors  having different speeds v1≤v2≤ ... 

≤vp-1≤vp where vjvp/2 for all j satisfying (2≤j≤p-1) is; 

1.  






p

j
jpj

p

j

vvvjpnnLB
1

1

1

2 /]/)(22/)2[(   

if )(2/)( pnpIS    

2. 


p

i
ip vvnLB

1

//)1(2  

if  


p

j
pj vvpnIS

1

0/)(2)(  

and if )(2/)( pnpIS   

3. pvnLB /)1(2  if 0 and if )(2/)( pnpIS   

 

Note that the speed v1 of processor p1 can be quite small so 

that it cannot execute any task of R(I)   and thereafter of G (n). 

In the following, we analyze the first expression of LB in the 

theorem where )(2/)( pnpIS   posing these questions: 

1. Assuming that the graph size n and the number of 

processors are invariable, what is the smallest value of LB 

when we vary the values vj for j = 1... p and without change 

the value 



p

j

jvV
1

? 

2. Let us n fixed and p variable, what is the smallest 

value of LB when the sum of the speeds V is invariable? 

 

We note firstly that the minimum idle time of processors is 

equal to: 

./)(2),...,(
1

1

1 





p

i

pip vvipvvTL  

Without lose of generality, we note LB par LB(v1,v2,…,vp) 

and we suppose that v1>1. We have then: 

 
.0)/(2),...,,1,1(),...,,( 32121  VvvvvvLBvvvLB ppp

 
For the same values of n, p and V, the lower bound decreases 

if the value of the speed of any processor pi decreases of a 

value that will be added to the speeds of the other processors 

having higher speeds than vi. This is justified by: 

 

.0/2),...,,1,1(),...,,( 32121  ppp vvvvvTLvvvTL  

i.e. the minimum idle time of processors decreases when the 

speed of processor pi decreases of a value added to the speed 

of another processor pj where i<j. Hence, we can deduce when 

n, p and V are invariable that the smallest value of the lower 

bound is reached when vi=1 for all i verified 1≤i≤p-1 et vp=V-

(p-1). In this case, the value of lower bound is:  

 

 VvppnnLB p /]/)1(2/)2[( 2  

 
On the other hand, if we vary the value of V without modify p 

and n, then the value of LB increases. This is because when 

any speed increased by a certain value the new execution of 

the graph G becomes faster than the former.  Same for the 

decreasing, the value of LB also decreases if the value of V 

decreases. Note that when V increases free the minimum idle 

time TL of processors decreases and vice versa. 

Let us now study the second point, by fixing the values of n 

and V and varying the value of p, the value of LB decreases if 

the value of p decreases. In fact, if we assume having p-1 

processors instead p with speeds  v1+v2, v3,…, vp  (v1+v2≤v3 ), 

then we have: 

 

.0)/(2),...,,(),...,,( 132121  VvvvvvvLBvvvLB ppp  

 

We infer that if p increases (resp. decreases) then LB 

increases (resp. decreases). This is explained by the minimum 

free time of processors decreases if the number of processors 

p decreases and vice versa while n and V are fixed.  As an 

example of this situation, we assume that we dispose a single 

processor whose its speed is equal to the sum of speeds of all 

processors. We find the value of sequential time: 

 

)2/()2( 2 VnnLB   

which is the smallest lower bound among all the lower bounds 

when n and V fixed and variable p. In this case, the minimum 

PC
Typewriter
47



free time TL=0. In the remaining of this paper, we present a 

scheduling for executing 2-steps graph with constant tasks. 

IV.  CRITICAL PATH SCHEDULING (CPS) 

In this section, we describe the critical path parallel 

algorithm   which executes  with  p  processors  the tasks  of 

2-steps graph G(n). We assume that the execution time Ex(T) 

of each task T is the same equal to one time unit. The p 

processors noted p1, p2... pp having respectively speeds v1, v2... 

vp. It is assumed  that all  vj are  integers satisfying: v1-1=    

v2-1= …= vα-1=vα+1=vα+2=…=vp=v where α (1≤α≤p) and v are  

integers.  

We call critical path of a task Ti,j the path of G(n) defined by 

tasks Ti,j, Ti+1,j,…, Tj,j, Tj,j+1, Tj+1,j+1,…, Tn-1,n, Tn,n. Its length is 

denoted by cp(Ti,j). It is easy to show that cp(Ti,j)=2n-i-j+1 the 

sum of Ex(T) where T is the task belonging to critical path of 

Tij.  Generally, at time t, the critical path scheduling (CPS) 

executes, among independent tasks, (i.e. which predecessors 

have been executed), the tasks which a critical path are the 

maximum. (CPS) starts execution at time t=0. The order of 

task execution is defined by the following property (P): 

The execution of an independent task Ti,j begins at the latest at 

the same time as Tu,v if c(Ti,j)>cp(Tu,v). 

The algorithm affects the tasks of the unique longest path 

Ti,i+1, Ti+1,i+1 (1≤i≤n-1) to the fastest processors pp.  At each 

time when any processor completes execution of a task, it 

begins the execution of another independent task having the 

longest critical path. At the time where the execution of the 

task Tn-p+1,n-p+2 begins, the scheduling (CPS) affects at each 

processor pj (2≤j≤p-1) the tasks not yet executed of column 

Cn-p+j+1without the tasks Tn-p+j,n-p+j+1, Tn-p+j+1,n-p+j+1 belonging to 

the longest path.   Fore more details of (CPS), an example of 

scheduling is given in table 1, where columns Time and Task 

constitute column s and  i,j (resp. t) in column Task (resp. 

Time) means that the processor ps  starts the execution of the 

task Ti,j at time t.  We have n=10, p=3, v1=v2=2, v3=3 and we 

suppose for simplification that the length of each task T is 

equal to Ex(T)= v1v2v3=12 units time.  The time complexity 

for computation is equal to T(3)=104 units time or the lower 

bound is LB=696/799.42.  

We show that all processors are active until starts the 

execution of task Tn-p+1,n-p+2 and at the time the processors are 

located in the lower part of G(n) bordered upperly (in the 

large sens) by the tasks Tn-p+1,n-p+2, Tn-p,n-p+3  … Tn-2p+3,n. But at 

time when the execution of Tn-p+1,n-p+2 it exists at least one  

task not yet executed and situated above the curve (C) defined 

in the previous section.  So, there is some gap of time between 

the computation time and the value of lower bound.  The 

difference increases with the value of the number of 

processors p. Generally this difference is always lower than 

2p/v(v+1). Then, we can deduce that the time of computation 

of (CPS) is LB+O(p). Remark that we can extend the (CPS) 

scheduling for any values of vj that satisfies vp/2≤vj≤vp 

(1≤j≤p-1).   For evaluate the communication costs, we assume 

that the processors are fully connected without any regard to 

the link contention and scheduling of messages, i.e. any 

number of message passing can take place at any given time: 

computation can be overlapped with communication. The 

communication costs between two dependent tasks executed 

by two different processors (resp. the same processor) is equal 

to 1 (resp. 0) unit time without overlapped computation-

communication.   

             TABLE 1 

                     EXECUTION OF (CPS) FOR n=10 AND p=3. 

1 2 3 

Task Time Task Time Task Time 

1,3 0 1,4 0 1,2 0 

1,5 6 1,6 6 2,2 4 

2,4 12 2,5 12 2,3 8 

1,7 18 3,5 18 3,3 12 

3,6 24 2,7 24 2,6 16 

4,6 30 1,8 30 3,4 20 

1,9 36 2,8 36 4,4 24 

3,8 42 4,7 42 4,5 28 

4,8 48 5,7 48 5,5 32 

2,10 54 3,9 54 3,7 36 

3,10 60 4,9 60 5,6 40 

5,9 66 6,8 66 2,9 44 

6,9 72 5,10 72 1,10 48 

7,9 78 6,10 78 6,6 52 

  7,10 84 6,7 56 

  8,10 90 5,8 60 

    7,7 64 

    4,10 68 

    7,8 72 

    8,8 76 

    8,9 84 

    9,9 88 

    9,10 96 

    10,10 100 

 

V. COMPARISON 

In this section, we experimentally compare the different 

results. In the fig. 3, we present for v=4 the variation of the 

values of LB and the execution time of (CPS) with and 

without communication costs when varying the values of 

number of processors p. The curves show the difference 
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between three values the lower bound LB, the execution time 

without (resp. with) communication costs (CPS(1)) (resp. 

(CPS(2)). The difference between the execution time of 

(CPS(1)) and LB is due to the processors are not situated on 

the  curve  (C)  at  the time  when  the execution  of the task 

Tn-p+1,n-p+2 starts. The fig. 4 shows that until now it has not 

reaches the lower bound of the execution time. On the other 

hand, we remark the superiority of (CPS) with communication 

costs compared to the existing schedulings.  

 

 

Fig. 3 Comparison of execution time of (CPS) and lower bound. 

  

VI. CONCLUSION 

In this paper, we have determined the lower bound of the 

execution time of any scheduling for 2-steps graph with UET 

tasks in the case where the speed vj of each processor pj 

verified vp/2≤vj≤vp (1≤j≤p-1). Then, we have presented 

efficient scheduling (CPS) with p processors having different 

speeds. The experimental results have showed that the 

execution time of the (CPS) is better compared to those 

currently existing. It’s necessary to confirm these results 

theoretically. In addition, it is important to note that 

theoretical and experimental study of the (CPS) on a cluster of 

processors is necessary. In other hand, it is possible to push 

the research to find an optimal scheduling for executing the 

tasks of 2-steps graph.  

 

 

Fig. 4 Comparison of execution time. 
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