
Scheduling of 2-Steps Graph with UET Tasks in a

Heterogeneous Environment
Mounira Belmabrouk

#1
, Mounir Marrakchi

*2

#
 Faculty of Letters and Human Sciences,

University of Sousse, Tunisia
1
 Mounira.belmabk@isffs.rnu.tn

*
 Department of Computer Sciences, Faculty of Sciences,

University of Sfax, Tunisia
2
Mounir.Marrakchi@fss.rnu.tn

marrakchimounir@yahoo.fr

Abstract— In this paper, we focus on scheduling the 2-steps

graph with UET tasks, i.e. tasks with the same length, in a

heterogeneous environment where processors are uniform and

have different speeds. Given a 2-steps graph of size n and p

processors, we determine the lower bound of the execution time

of any scheduling by maximizing the activity of each processor.

Then, we present an efficiency schedule in execution time and the

experimental results without and with communication costs

between processors and we compare the performance of our

algorithm with existing scheduling scheme through the result of

experiments.

Keywords— 2-steps Graph, Scheduling, Communication,

Heterogeneous Environment, Optimality.

I. INTRODUCTION

The 2-steps graph is a precedence graph of several linear

algebra algorithms such as the triangularization of a matrix,

solving a triangular system ... [4], [5]. Here, we are interested

in scheduling of 2-steps graph with UET (Unit Execution

Time) tasks, i.e. the execution time for any task by the same

processor is constant, which is the precedence graph of the

algorithm solving a triangular system. In the general case, the

search for an optimal solution of a scheduling problem is NP-

complete. But by setting some parameters of the problem, it is

possible to resolve this issue. Scheduling in a homogeneous or

heterogeneous 2-steps graph has been studied by several

authors [1], [2], [3], [4], [5] but for all existing schedules

optimality in time parallel execution is not yet reached. This is

because, firstly, that the activity of each processor is not

maximized and secondly that the communication cost is not

minimized. Our goal in this article is to determine firstly the

lower bound of the execution time of the 2-steps graph in a

heterogeneous environment and secondly to find a scheduling

more efficient than the existing. Here, we minimize the

schedule length, which is defined as the maximum completion

time of all nodes by assuming tasks to processors while

respecting the precedence constraints. This paper is organized

as follows. In Section 2, we describe the related work.

Thereafter, in section 3, we determine for any n the size of

graph, the lower bound of the execution time of any

scheduling neglecting the communication costs between

processors assuming that vj satisfies vp/2≤vj≤vp (1≤j≤p-1) and

p verified 2≤p≤n. Then, we present in paragraph 4 a parallel

algorithm without and with communication costs in the case

where v1-1=v2-1= …= vα-1=vα+1=vα+2=…=vp=v, α (1≤α≤p)

and v are integers. Finally and before concluding, we compare

in section 5 the complexities found experimentally with those

of previous work.

II. RELATED WORK

Efficient application scheduling is critical for achieving

high performance in homogeneous and heterogeneous multi-

processors system. Different schedules, belonging to different

classes such as list scheduling, cluster scheduling …, have

been published. The schedule (HEFT) «Heterogeneous

Earliest-Finish-Time» [5] is a recursive algorithm. It uses the

concept of the earliest finish time of each task for ordering the

tasks and assigning them to processors later. The (PETS)

"Performance Effective Task Scheduling" [3] scheduling has

three phases. In the first phase, scheduling (PETS) regroups

the independent tasks together. In the second and three phases,

(PETS) computes priority and assigns each task to the

available processor. The performances of (PETS) are better

than the (HEFT). The paper [6] suggest a novel approach

called «Constrained Earliest Finish Time» (CEFT) to provide

schedules for heterogeneous system using the concept of the

constrained critical path. The experimentations results show

that the (CEFT) strategy outperforms the well-known (HEFT)

and (PETS) strategies.

III. LOWER BOUND OF THE EXECUTION TIME

Before calculating the lower bound of the parallel

execution time of 2-steps graph with UET tasks in a

heterogeneous environment, we present the following

definitions. We consider G(n) the 2-steps graph with UET

tasks and p processors p1, p2... pp having respectively speeds

PC
Typewriter

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.2, pp. 45-49, 2013

Copyright - IPCO

PC
Typewriter
45

mailto:Mounir.Marrakchi@fss.rnu.tn

v1, v2... vp. It is assumed that all vj are integers satisfying

v1≤v2≤ ... ≤vp-1≤vp where vjvp/2 for all j satisfying (1≤j≤p-1).

Figure 1 shows G(4). The number of tasks to having the

2-steps graph is equal to (n
2
+n-2)/2. The graph G(n) is

composed of n-1 columns Ck (k = 2, .., n) where k is formed

by the tasks T1k, T2k, ..., Tkk. A level i of G(n) (1≤i≤ n-1)

contains the n-i+1 following tasks Ti,i+1, Ti+1,i+1, Ti,i+2 …, Ti,n.

Fig. 1 The 2-steps graph for n=4.

To find the lower bound of the execution time of tasks

belonging to G(n), we minimize the processor inactivity time.

Our goal is to keep all processors active as long as possible.

For this, two processors with two different speeds, one that

has the lowest speed is finally released later at the same time

than the other. As at the end of the execution of each task

Tn-p+j,n-p+j (1≤j≤p-1) a processor must release, the slowest

processors become inactive firstly. On the other hand, to

minimize the idle time of processors, it is necessary that all

processors are active until the execution the task Tn-p+1,n-p+2

starts because at this time the number of free tasks is lower or

equal to p-1. Then, the processor p1 becomes inactive and

each other processor pj (2≤j≤p-1) executes tasks of column

Cn-p+j+1for the time when pp starts the execution of the task

Tn-p+1,n-p+2. The fastest processor pp executes the tasks of the

longest path constituted by Tn-p+j-1, n-p+j, Tn-p+j, n-p+j (2≤j≤ p).

For this, we partition the 2-steps graph into two regions noted

R(I) and R(II) as indicated in fig. 2. The boundary curve (C)

between R(I) and R(II) is the equipotential curve which

contains task Tn-p+1,n-p+2. We define,

pjjpni vjpvijpnTch /)(2/)()(1, 

where j verified (2≤j≤p-1), as the length from the task Ti,n-

p+j+1R(II), to task Tnn by the sum of the number of tasks

situating between the tasks Ti,n-p+j+1 and Tn-p+j-1,n-p+j+1and

belonging to Cn-p+j+1\{Tn-p+j,n-p+j+1 , Tn-p+j+1,n-p+j+1} divided by vj

and the number of tasks of critical path situated between Tn-

p+j,n-p+j+1 and Tnn divided by vp. The curve (C) is defined by

the two path identified in bold on the fig. 2 are executed one

(the tasks of the longest path) by pp and the other by pj (the

tasks belonging to the column Cn-p+j+1) and pp (the tasks

belonging to the longest path) at the same time. It

intercepts the column Cn-p+j+1 on the task Ti(j),n-p+j+1 where

2≤j≤p-1:

)()()(),(2,11,1)(jpnjipnpnjpnji TchTchTch  

pjjpnji vjpvjijpnTch /)(2/))(()(1),(

jjpnjijpnji vTchTch /1)()(1),(1,1)( 

ppnpn vpTch /)1(2)(2,1 

Note that the curve (C) depends on the values for the speeds

of processors.

In the following, we note S(I) (resp. S(II)) the sum of tasks or

part of tasks belonging to R(I) (resp. R(II)) and we determine

the lower bound for execution the region R(I) with p

processors having different speeds. The value of S(I) is equal

to the total number of tasks of G(n)):

2/)2(2  nn

minus the total number of tasks:

  


p

j
pj vvjIIS

1

/)1(2)(

belonging to R(II), then

 


p

j
pj vvjnnIS

1

2 /)1(22/)2()(.

Fig. 2 The partition of the 2-steps graph.

In the following, we have the discussion for determining the

lower bound of R(I):

1. If all processors are active without interruption for

executing the region R(I). In this case, we can suppose that the

T12 T13

T22

T23

T33

T14

T24

T34

T44

Tn-p+1, n-p+2

(C)

p-1

Cn

R(I)

R(II)

Cn-p+j+1

PC
Typewriter
46

p processors are identical to others p processors q1, q2... qp

with the same speed equal to

pvmv
p

i
i /)(

1




the average of the sum of speeds. Then, S(I)/p is the number

of tasks, belonging to R(I), can be executed by each processor

qj and 2(n-p) is the number of tasks constituted the longest

path of R(I). Hence,)(2/)(pnpIS  and then we can

consider all the processors are active without interruption for

executing R(I) and)(/)()(mpvISILB  .

2. If)(2/)(pnpIS  then it exists at least one

processor that is idle for a period of time when executed the

tasks of R(I). In this case, for minimizing the idle time of

processors, the tasks of the longest path of R(I) must be

executed by the faster processor pp. And each processor pj

(1≤j≤p-1) can be executed pj vvpn /)(2  tasks of region R(I)

private of the tasks constituted the longest path. Then, we

have:

 


p

j
pj vvpnIS

1

/)(2)(

pvpnILB /)(2)( if ∆≤0,




p

i
ip vvpnILB

1

//)(2)(, otherwise

For the time of parallel execution of region R(II) is equal to

ppnpn vpTchIILB /)1(2)()(2,1  

It is necessary that vjvp/2 (2≤j≤p-1). Finally, we have

LB=LB(I)+LB(II) and the following results are proved:

THEOREM

The lower bound LB for executing the UET 2-steps graph

G(n) with p processors having different speeds v1≤v2≤ ...

≤vp-1≤vp where vjvp/2 for all j satisfying (2≤j≤p-1) is;

1.  






p

j
jpj

p

j

vvvjpnnLB
1

1

1

2 /]/)(22/)2[(

if)(2/)(pnpIS 

2. 


p

i
ip vvnLB

1

//)1(2

if  


p

j
pj vvpnIS

1

0/)(2)(

and if)(2/)(pnpIS 

3. pvnLB /)1(2  if 0 and if)(2/)(pnpIS 

Note that the speed v1 of processor p1 can be quite small so

that it cannot execute any task of R(I) and thereafter of G (n).

In the following, we analyze the first expression of LB in the

theorem where)(2/)(pnpIS  posing these questions:

1. Assuming that the graph size n and the number of

processors are invariable, what is the smallest value of LB

when we vary the values vj for j = 1... p and without change

the value 



p

j

jvV
1

?

2. Let us n fixed and p variable, what is the smallest

value of LB when the sum of the speeds V is invariable?

We note firstly that the minimum idle time of processors is

equal to:

./)(2),...,(
1

1

1 





p

i

pip vvipvvTL

Without lose of generality, we note LB par LB(v1,v2,…,vp)

and we suppose that v1>1. We have then:

.0)/(2),...,,1,1(),...,,(32121  VvvvvvLBvvvLB ppp

For the same values of n, p and V, the lower bound decreases

if the value of the speed of any processor pi decreases of a

value that will be added to the speeds of the other processors

having higher speeds than vi. This is justified by:

.0/2),...,,1,1(),...,,(32121  ppp vvvvvTLvvvTL

i.e. the minimum idle time of processors decreases when the

speed of processor pi decreases of a value added to the speed

of another processor pj where i<j. Hence, we can deduce when

n, p and V are invariable that the smallest value of the lower

bound is reached when vi=1 for all i verified 1≤i≤p-1 et vp=V-

(p-1). In this case, the value of lower bound is:

 VvppnnLB p /]/)1(2/)2[(2

On the other hand, if we vary the value of V without modify p

and n, then the value of LB increases. This is because when

any speed increased by a certain value the new execution of

the graph G becomes faster than the former. Same for the

decreasing, the value of LB also decreases if the value of V

decreases. Note that when V increases free the minimum idle

time TL of processors decreases and vice versa.

Let us now study the second point, by fixing the values of n

and V and varying the value of p, the value of LB decreases if

the value of p decreases. In fact, if we assume having p-1

processors instead p with speeds v1+v2, v3,…, vp (v1+v2≤v3),

then we have:

.0)/(2),...,,(),...,,(132121  VvvvvvvLBvvvLB ppp

We infer that if p increases (resp. decreases) then LB

increases (resp. decreases). This is explained by the minimum

free time of processors decreases if the number of processors

p decreases and vice versa while n and V are fixed. As an

example of this situation, we assume that we dispose a single

processor whose its speed is equal to the sum of speeds of all

processors. We find the value of sequential time:

)2/()2(2 VnnLB 

which is the smallest lower bound among all the lower bounds

when n and V fixed and variable p. In this case, the minimum

PC
Typewriter
47

free time TL=0. In the remaining of this paper, we present a

scheduling for executing 2-steps graph with constant tasks.

IV. CRITICAL PATH SCHEDULING (CPS)

In this section, we describe the critical path parallel

algorithm which executes with p processors the tasks of

2-steps graph G(n). We assume that the execution time Ex(T)

of each task T is the same equal to one time unit. The p

processors noted p1, p2... pp having respectively speeds v1, v2...

vp. It is assumed that all vj are integers satisfying: v1-1=

v2-1= …= vα-1=vα+1=vα+2=…=vp=v where α (1≤α≤p) and v are

integers.

We call critical path of a task Ti,j the path of G(n) defined by

tasks Ti,j, Ti+1,j,…, Tj,j, Tj,j+1, Tj+1,j+1,…, Tn-1,n, Tn,n. Its length is

denoted by cp(Ti,j). It is easy to show that cp(Ti,j)=2n-i-j+1 the

sum of Ex(T) where T is the task belonging to critical path of

Tij. Generally, at time t, the critical path scheduling (CPS)

executes, among independent tasks, (i.e. which predecessors

have been executed), the tasks which a critical path are the

maximum. (CPS) starts execution at time t=0. The order of

task execution is defined by the following property (P):

The execution of an independent task Ti,j begins at the latest at

the same time as Tu,v if c(Ti,j)>cp(Tu,v).

The algorithm affects the tasks of the unique longest path

Ti,i+1, Ti+1,i+1 (1≤i≤n-1) to the fastest processors pp. At each

time when any processor completes execution of a task, it

begins the execution of another independent task having the

longest critical path. At the time where the execution of the

task Tn-p+1,n-p+2 begins, the scheduling (CPS) affects at each

processor pj (2≤j≤p-1) the tasks not yet executed of column

Cn-p+j+1without the tasks Tn-p+j,n-p+j+1, Tn-p+j+1,n-p+j+1 belonging to

the longest path. Fore more details of (CPS), an example of

scheduling is given in table 1, where columns Time and Task

constitute column s and i,j (resp. t) in column Task (resp.

Time) means that the processor ps starts the execution of the

task Ti,j at time t. We have n=10, p=3, v1=v2=2, v3=3 and we

suppose for simplification that the length of each task T is

equal to Ex(T)= v1v2v3=12 units time. The time complexity

for computation is equal to T(3)=104 units time or the lower

bound is LB=696/799.42.

We show that all processors are active until starts the

execution of task Tn-p+1,n-p+2 and at the time the processors are

located in the lower part of G(n) bordered upperly (in the

large sens) by the tasks Tn-p+1,n-p+2, Tn-p,n-p+3 … Tn-2p+3,n. But at

time when the execution of Tn-p+1,n-p+2 it exists at least one

task not yet executed and situated above the curve (C) defined

in the previous section. So, there is some gap of time between

the computation time and the value of lower bound. The

difference increases with the value of the number of

processors p. Generally this difference is always lower than

2p/v(v+1). Then, we can deduce that the time of computation

of (CPS) is LB+O(p). Remark that we can extend the (CPS)

scheduling for any values of vj that satisfies vp/2≤vj≤vp

(1≤j≤p-1). For evaluate the communication costs, we assume

that the processors are fully connected without any regard to

the link contention and scheduling of messages, i.e. any

number of message passing can take place at any given time:

computation can be overlapped with communication. The

communication costs between two dependent tasks executed

by two different processors (resp. the same processor) is equal

to 1 (resp. 0) unit time without overlapped computation-

communication.

 TABLE 1

 EXECUTION OF (CPS) FOR n=10 AND p=3.

1 2 3

Task Time Task Time Task Time

1,3 0 1,4 0 1,2 0

1,5 6 1,6 6 2,2 4

2,4 12 2,5 12 2,3 8

1,7 18 3,5 18 3,3 12

3,6 24 2,7 24 2,6 16

4,6 30 1,8 30 3,4 20

1,9 36 2,8 36 4,4 24

3,8 42 4,7 42 4,5 28

4,8 48 5,7 48 5,5 32

2,10 54 3,9 54 3,7 36

3,10 60 4,9 60 5,6 40

5,9 66 6,8 66 2,9 44

6,9 72 5,10 72 1,10 48

7,9 78 6,10 78 6,6 52

 7,10 84 6,7 56

 8,10 90 5,8 60

 7,7 64

 4,10 68

 7,8 72

 8,8 76

 8,9 84

 9,9 88

 9,10 96

 10,10 100

V. COMPARISON

In this section, we experimentally compare the different

results. In the fig. 3, we present for v=4 the variation of the

values of LB and the execution time of (CPS) with and

without communication costs when varying the values of

number of processors p. The curves show the difference

PC
Typewriter
48

between three values the lower bound LB, the execution time

without (resp. with) communication costs (CPS(1)) (resp.

(CPS(2)). The difference between the execution time of

(CPS(1)) and LB is due to the processors are not situated on

the curve (C) at the time when the execution of the task

Tn-p+1,n-p+2 starts. The fig. 4 shows that until now it has not

reaches the lower bound of the execution time. On the other

hand, we remark the superiority of (CPS) with communication

costs compared to the existing schedulings.

Fig. 3 Comparison of execution time of (CPS) and lower bound.

VI. CONCLUSION

In this paper, we have determined the lower bound of the

execution time of any scheduling for 2-steps graph with UET

tasks in the case where the speed vj of each processor pj

verified vp/2≤vj≤vp (1≤j≤p-1). Then, we have presented

efficient scheduling (CPS) with p processors having different

speeds. The experimental results have showed that the

execution time of the (CPS) is better compared to those

currently existing. It’s necessary to confirm these results

theoretically. In addition, it is important to note that

theoretical and experimental study of the (CPS) on a cluster of

processors is necessary. In other hand, it is possible to push

the research to find an optimal scheduling for executing the

tasks of 2-steps graph.

Fig. 4 Comparison of execution time.

REFERENCES

[1] R. Eswari, S. Nickolas, Expected completion time based scheduling

algorithm for heterogeneous processors, in IPCSIT’2011, vol.16, 2011, pp.

72-77
[2] M. I. Daoud, N. Kharma, A high performance algorithm for static task

scheduling in heterogeneous distributed computing systems, Parallel

Distributed Computing, 2008, 68, pp.399-409.
 [3] E. Illavarasan, P.Thambidurai, Low complexity performance effective task

scheduling algorithm for heterogeneous computing environments. J.

Computer Science. 2007, 3(2), pp. 94-103.
[4] S. Mingsheng, S. Shixin, W. Qingxian, An efficient parallel scheduling

algorithm of dependent tasks graphs,in PDCAT’2003, 2003, pp. 595-598

[5] H. Topcuoglu, S. Hariri, M.-Y Wu, Performance effective and low-
complexity task scheduling for heterogeneous computing, IEEE tran. on para.

and dis. systems, vol. 13(13), 2002, pp. 260-274

[6] M. A. Khan, Scheduling for heterogeneous systems using constrained
critical paths, Parallel Computing 38, 2012, pp. 175-193

PC
Typewriter
49

